Wednesday, 1 September 2010

star - Create a signal to noise map from heatmap

Recently, I obtained my heatmap from a sky survey. But now, I'm trying to get a signal to noise map from my heatmap.



My heatmap looks like :



enter image description here



My colour bar indicates the number of stars per pixel (I assume, but I'm not totally sure).



There are several steps in order to get my "S/N" map, but firstly, I need to get mean value from pixels around pixel i. To do that, I must draw a circle around the pixel i (circle with a radius about 10 arcmin, for exemple).



To know where I am, that's to say on which pixel I'm working. I scripted a red cross which indicates the pixel. I want to determine the mean value around this cross for each pixel in the heatmap.



I searched on this website and I found this post: Get pixel value after a colormap. I think that it will be interesting in my case also.



But I really haven't an idea to script this. After that, I need to calculate lots of things like gaussian RMS etc .. but for that, it will be easier.



This is my script :



    # -*- coding: utf-8 -*-
#!/usr/bin/env python

from astropy.io import fits
from astropy.table import Table
from astropy.table import Column
from astropy.convolution import convolve, Gaussian2DKernel
import numpy as np
import scipy.ndimage as sp
import matplotlib.pyplot as plt



###################################
# Importation du fichier de champ #
###################################

filename = '/home/valentin/Desktop/Field169_combined_final_roughcal.fits_traite_traiteXY_traiteXY_final'

print 'Fichier en cours de traitement' + str(filename) + 'n'

# Ouverture du fichier à l'aide d'astropy
field = fits.open(filename)

# Lecture des données fits
tbdata = field[1].data


#######################################
# Parametres pour la carte de densité #
#######################################

# Boite des étoiles bleues :
condition_1 = np.bitwise_and(tbdata['g0-r0'] > -0.5, tbdata['g0-r0'] < 0.8 ) # Ne garder que les -0.4 < (g-r)0 < 0.8
condition_final = np.bitwise_and(tbdata['g0'] < 23.5, condition_1) # Récupere les valeurs de 'g0' < 23.5 dans les valeurs de blue_stars_X

Blue_stars = tbdata[condition_final]

RA_Blue_stars = Blue_stars['RA'] # Récupere les valeurs de 'RA' associées aux étoiles bleues
DEC_Blue_stars = Blue_stars['DEC'] # Récupere les valeurs de 'DEC' associées aux étoiles bleues


# Boite des étoiles tres bleues :
condition_2 = np.bitwise_and(tbdata['g0-r0'] > -0.5, tbdata['g0-r0'] < 0.2 )
condition_final2 = np.bitwise_and(tbdata['g0'] < 23.5, condition_2)

Very_Blue_stars = tbdata[condition_final2]

RA_Very_Blue_stars = Very_Blue_stars['RA'] # Récupere les valeurs de 'RA' associées aux étoiles bleues
DEC_Very_Blue_stars = Very_Blue_stars['DEC']

# ==> La table finale avec le masque s'appelle Blue_stars & Very_Blue_stars

##################################################################
# Traçage des différents graphiques de la distribution d'étoiles #
##################################################################


fig1 = plt.subplot(2,2,1)
plt.plot(tbdata['g0-r0'], tbdata['g0'], 'r.', label=u'Etoiles du champ')
plt.plot(Blue_stars['g0-r0'], Blue_stars['g0'], 'b.', label =u'Etoiles bleues')
plt.plot(Very_Blue_stars['g0-r0'], Very_Blue_stars['g0'], 'k.', label =u'Etoiles tres bleues')
plt.title('Diagramme Couleur-Magnitude')
plt.xlabel('(g0-r0)')
plt.ylabel('g0')
plt.xlim(-1.5,2.5)
plt.ylim(14,28)
plt.legend(loc='upper left')
plt.gca().invert_yaxis()

fig1 = plt.subplot(2,2,2)
plt.plot(RA_Blue_stars, DEC_Blue_stars, 'b.', label =u'Etoiles bleues', alpha=0.15)
plt.title('Carte de distribution des etoiles bleues')
plt.xlabel('RA')
plt.ylabel('DEC')
plt.legend(loc='upper left')

fig1 = plt.subplot(2,2,3)
plt.plot(RA_Very_Blue_stars, DEC_Very_Blue_stars, 'r.', label =u'Etoiles tres bleues',alpha=0.4)
plt.title('Carte de distribution des etoiles tres bleues')
plt.xlabel('RA')
plt.ylabel('DEC')
plt.legend(loc='upper left')

fig1 = plt.subplot(2,2,4)
plt.plot(RA_Blue_stars, DEC_Blue_stars, 'b.', label =u'Etoiles bleues', alpha=0.15)
plt.plot(RA_Very_Blue_stars, DEC_Very_Blue_stars, 'r.', label =u'Etoiles tres bleues',alpha=0.4)
plt.title('Carte de distribution des etoiles bleues et tres bleues')
plt.xlabel('RA')
plt.ylabel('DEC')
plt.legend(loc='upper left')

######################################################################
# Traçage des différents graphiques de la carte de densité d'étoiles #
######################################################################


# Carte de densité des étoiles bleues pour 1 pixel de 1 arcmin^2 (bins = 180)

X_Blue_stars = Blue_stars['X']
Y_Blue_stars = Blue_stars['Y']

heatmap, xedges, yedges = np.histogram2d(X_Blue_stars, Y_Blue_stars, bins=180) # bins de 180 car 3° de champ en RA = 180 arcmin de champ en RA
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

RotatePlot = sp.rotate(heatmap,90)

plt.clf()
#fig = plt.subplot(2,2,1)
plt.imshow(RotatePlot, extent=extent, interpolation='none')
plt.colorbar()
plt.title('Carte de densite des etoiles bleues (non lisse)')
plt.xlabel("X")
plt.ylabel("Y")


# Carte de densité lissée (par convolution avec une gaussienne 2 sigma) des étoiles bleues pour 1 pixel de 1 arcmin^2 (bins = 180)
# ==> Avec Astropy

plt.clf()
fig = plt.figure(1)
smoothed_heatmap = plt.imshow(convolve(RotatePlot, Gaussian2DKernel(stddev=2)), interpolation='nearest')
plt.colorbar()
plt.plot(100,120,'rx', markeredgewidth=3, markersize=10)
plt.title('Carte de densite des etoiles bleues lisse (astropy)')
plt.xlabel("X (arcmin)")
plt.ylabel("Y (arcmin)")
plt.xlim(0,180)
plt.ylim(0,180)
print smoothed_heatmap.cmap(smoothed_heatmap.norm(X_Blue_stars[100],Y_Blue_stars[120]))

#plt.savefig('/home/valentin/Desktop/Final.png')
plt.show()

print "Création du Diagramme"

No comments:

Post a Comment