Using current technology (and by that I mean experiments and telescopes that are available now) we have not detected an "Earth-like" planet and we would probably be unable to detect life on Earth even if observed from a distance of a few light years. Therefore there is currently no prospect of detecting life on an "Earth doppelganger". I elaborate below:
No planets like the Earth have yet been detected around another star. That is to say, none that have a similar mass, radius and orbit at 1 au (or close to it) from a solar-type star. With current technology, it is just out of reach. Therefore any directed search for life on an Earth-like planet wouldn't actually know where to start. If you can't detect the planet at all then there is absolutely no chance of looking at its atmospheric composition to look for biomarkers (e.g. oxygen along with a reducing gas like methane, or chlorofluorocarbons from an industrial civilisation - Lin et al. 2014). The only exoplanets for which atmospheric compositions have been (crudely and tentatively) measured are "hot Jupiters". - giant exoplanets orbiting very close to their parent stars.
A "blind" search could look for radio signatures and of course this is what SETI has been doing. If we are talking about detecting "Earth", then we must assume that we are not talking about deliberate beamed attempts at communication, and so must rely on detecting random radio "chatter" and accidental signals generated by our civilisation.
The SETI Phoenix project was the most advanced search for radio signals from other intelligent life. Quoting from Cullers et al. (2000): "Typical signals, as opposed to our strongest signals fall below the detection threshold of most surveys, even if the signal were to originate from the nearest star". Quoting from Tarter (2001): "At current levels of sensitivity, targeted microwave searches could detect the equivalent power of strong TV transmitters at a distance of 1 light year (within which there are no other stars)...". The equivocation in these statements is due to the fact that we do emit stronger beamed signals in certain well-defined directions, for example to conduct metrology in the solar system using radar. Such signals have been calculated to be observable over a thousand light years or more. But these signals are brief, beamed into an extremely narrow angle and unlikely to be repeated. You would have to be very lucky to be observing in the right direction at the right time if you were performing targeted searches.
Hence my assertion that with current methods and telescopes there is not much chance of success. But of course technology advances and in the next 10-20 years there may be better opportunities.
The first step in a directed search would be to find planets like Earth. The first major opportunity will be with the TESS spacecraft, launching in 2017, capable of detecting earth-sized planets around the brightest 500,000 stars. However, it's 2-year mission would limit the ability to detect an Earth-analogue. The best bet for finding other Earths will come later (2024 perhaps) with the launch of Plato, a six-year mission that again, studies the brightest stars. However, there is then a big leap forward required to perform studies of the atmospheres of these planets. Direct imaging and spectroscopy would probably require space-borne nulling interferometers; indirect observations of phase-effects and transmission spectroscopy through an exoplanet atmosphere does not require great angular resolution, just massive precision and collecting area. Spectroscopy of something the size of Earth around a normal star will probably require a bigger successor to the James Webb Space Telescope (JWST - launch 2018), or even more collecting area than will be provided by the E-ELT in the next decade. For example Snellen (2013) argues it would take 80-400 transits-worth of exposure time (i.e. 80-400 years!) to detect the biomarker signal of an Earth-analogue with the E-ELT!
It has been suggested that new radio telescope projects and technology like the Square Kilometre Array may be capable of serendipitously detecting radio "chatter" out to distances of 50 pc ($sim 150$ light years) - see Loeb & Zaldarriaga (2007). This array, due to begin full operation some time after 2025 could also monitor a multitude of directions at once for beamed signals. A good overview of what might be possible in the near future is given by Tarter et al. (2009).
No comments:
Post a Comment