Friday, 11 February 2011

general relativity - Quantum Mechanics after the detection of Gravitational Waves

The impact of this measurement on the status of quantum gravitation is exactly zero.



The proper statement of the incompatibility of general relativity and quantum mechanics is that the quantum field theory of general relativity is not renormalizable. Renormalizability essentially means that the theory is well-defined at all energy scales, which seems like a reasonable demand on a proposed fundamental theory.



So what we know is that taking classical general relativity and quantizing it, we do not get a fundamental theory of quantum gravitation. This does nothing to rule out other proposed quantum theories of gravitation, for example, LQG or string theory.



Furthermore, the way physics works is that new theories must reduce to old ones in the domains of applicability of the old theories. Whatever the correct quantum theory of gravitation, its low-energy limit should be quantized general relativity, and the classical limit of that is classical general relativity. It's just not true that you have to choose between general relativity or quantum mechanics.



So this measurement of a prediction of classical general relativity does absolutely nothing to show that no quantum mechanical model of gravitation exists. It couldn't, because we already have a quantum mechanical model of gravitation: quantized general relativity. It's not as "nice" as we would like, but that really only rules it out as the fundamental theory.

No comments:

Post a Comment