The inverse series doesn't have that form. If z=e−Q(1+Q−1)z=e−Q(1+Q−1) then
Q=−logz+log(1+Q−1)=logz+(logz)−1+O((logz)−2)quadmboxaszto0+.Q=−logz+log(1+Q−1)=logz+(logz)−1+O((logz)−2)quadmboxaszto0+.
The general form should be
Q=−logz+sumi>0bi(logz)−i.Q=−logz+sumi>0bi(logz)−i.
You might be able to coerce this into the Lagrange inversion form, but I don't see how right now. I would just generalize the solution above:
Write
Q=−logz+logleft(1+sumaiQ−iright)=−logz+sumfrac(−1)kkleft(sumaiQ−iright)k.Q=−logz+logleft(1+sumaiQ−iright)=−logz+sumfrac(−1)kkleft(sumaiQ−iright)k.
Expanding this will give you a formula of the form
Q=−logz+sumNi=1ciQ−i+O(Q−N−1)quad(∗)Q=−logz+sumNi=1ciQ−i+O(Q−N−1)quad(∗)
for any NN you like. If you already know that Q=−logz+sumN−1i=0bi(logz)−i+O((logz)−N)Q=−logz+sumN−1i=0bi(logz)−i+O((logz)−N), then plug your known values into (∗)(∗) to deduce the value of bNbN.
No comments:
Post a Comment