Monday 21 August 2006

ag.algebraic geometry - Why and how are moduli spaces of (semi)stable vector bundles well-behaved?

From a topological viewpoint, I believe the idea is that one wants to have a Hausdorff quotient space. In other words, consider the space of all holomorphic structures on a fixed (topological) vector bundle on a curve. Holomorphic structures can be viewed as differential operators on sections of the bundle, such that a section is holomorphic if and only if this operator evaluates to zero on the section. (See, for example, sections 5 and 7 of Atiyah and Bott's "The Yang-Mills equations over Riemann surfaces.") This makes the space of holomorphic structures (i.e. the space of bundles with a fixed topological type) into an affine space. The group of complex automorphisms of the bundle acts on this space, and the quotient is the moduli space of holomorphic bundles. If you don't restrict to stable bundles, this quotient space fails to be Hausdorff. Atiyah and Bott reference this to Mumford's 1965 GIT book. Actually, they just say that the moduli space of stable bundles is Hausdorff, due to the fact that the orbits of stable bundles are closed. (Hmmm... that really just says points are closed in the quotient...) I don't know how much of this is spelled out in Mumford; in particular, I don't know whether there's a proof in the literature that the full quotient space fails to be Hausdorff.

No comments:

Post a Comment