Elaborating on Deane Yang's answer and Willie Wong's comment: Since
M2subsetmathbbR2M2subsetmathbbR2 is a CinftyCinfty submanifold with boundary, the
Euclidean coordinates are global. Generally, if MnMn is a compact manifold
with boundary, we can cover it by a finite number of charts xixi, where
for any CinftyCinfty metric gg the functions gijgij and partialalphagijpartialalphagij are bounded (depending on gg and |alpha||alpha|) and where alphaalpha is a
multi-index with |alpha|geq0|alpha|geq0.
The scalar curvature RgRg (twice the Gauss curvature KK if n=2n=2) is
Rg=gjk(partialellGammaelljk−partialjGammaellellk+GammapjkGammaellellp−GammapellkGammaelljp)=(g−1)2astpartial2g+(g−1)3ast(partialg)2Rg=gjk(partialellGammaelljk−partialjGammaellellk+GammapjkGammaellellp−GammapellkGammaelljp)=(g−1)2astpartial2g+(g−1)3ast(partialg)2
since the Christoffel symbols have the form Gamma=g−1astpartialgGamma=g−1astpartialg,
where partialkgpartialkg denotes some kk-th partial derivative of gijgij and
where astast denotes a linear combination of products while summing over
repeated indices. From the formula for RR we have for metrics g,gprimeg,gprime,
begin{align*}
& |R_{g}(x)-R_{g^{prime}}(x)|\
& leq C(|g^{-1}|^{2}+|g^{prime-1}|^{2})|partial^{2}g-partial^{2}g^{prime
}|+C(|g^{-1}|^{4}+|g^{prime-1}|^{4})(|partial g|^{2}+|partial g^{prime
}|^{2})|g-g^{prime}|\
& +C(|g^{-1}|^{3}+|g^{prime-1}|^{3}){(|partial^{2}g|+|partial^{2}
g^{prime}|)|g-g^{prime}|+(|partial g|+|partial g^{prime}|)leftvert
partial g-partial g^{prime}rightvert }
end{align*}
since |g−1−gprime−1|leqC(|g−1|2+|gprime−1|2)|g−gprime||g−1−gprime−1|leqC(|g−1|2+|gprime−1|2)|g−gprime|.
Let hatOmega=C2(M,operatornameSym)hatOmega=C2(M,operatornameSym). Given hinhatOmegahinhatOmega,
define ||h||=supxinMmaxi,j,k,ell|hij(x)|,|hij,k(x)|,|hij,kell(x)|||h||=supxinMmaxi,j,k,ell|hij(x)|,|hij,k(x)|,|hij,kell(x)|. Then |Rg(x)−Rgprime(x)|leqC||g−gprime|||Rg(x)−Rgprime(x)|leqC||g−gprime||, where CC depends on bounds on the inverses and the first
and second derivatives of gg and gprimegprime.
Elaborating on Terence Tao's answer and Deane Yang's comment: One reason it is
convenient to compute in local coordinates xixi is that [partiali,partialj]=0[partiali,partialj]=0. So the expression for the Christoffel symbols has only
33 terms instead of the 66 terms comprising the formula for nablanabla:
Gammakij=frac12gkell(partialigjell+partialjgiell−partialellgij)Gammakij=frac12gkell(partialigjell+partialjgiell−partialellgij), which is symmetric in ii and jj. With
fracpartialpartialsgij=vijfracpartialpartialsgij=vij, the variation formula is easy to
compute: fracpartialpartialsGammakij=frac12gkell(nablaivjell+nablajviell−nablaellvij)fracpartialpartialsGammakij=frac12gkell(nablaivjell+nablajviell−nablaellvij), since the
computation of this tensor formula at any point pp may be done in coordinates
where partialigjk(p)=0partialigjk(p)=0 (such as normal coordinates centered at pp);
this enables us to convert partialipartiali to nablainablai and to ignore the
fracpartialpartialsgkellfracpartialpartialsgkell term since it is multiplied by terms of
the form partialgpartialg. Now the variation of the Riemann curvature tensor is
fracpartialpartialsRellijk=nablai(dfracpartialpartialsGammaelljk)−nablaj(dfracpartialpartialsGammaellik)fracpartialpartialsRellijk=nablai(dfracpartialpartialsGammaelljk)−nablaj(dfracpartialpartialsGammaellik) using the same trick of computing at the center pp of
normal coordinates and replacing partialpartial by nablanabla (note that
fracpartialpartials(GammaastGamma)=0fracpartialpartials(GammaastGamma)=0 at pp by the product rule);
the resulting formula is true in any coordinates since it is tensorial.
Generally, it is convenient to compute in local coordinates because it can be
done more or less mechanically. For example, if alpha is a 1-form, then
nablainablajalphak−nablajnablaialphak=−Rellijkalphaell. One can remember this as the contraction of
−operatornameRm and alpha, where the lower indices i,j,k on
operatornameRm appear in the same order as the first term on the left.
Similarly, if beta is a 2-tensor, then nablainablajbetakell−nablajnablaibetakell=−Rmijkbetamell−Rijell, where the the lower indices of operatornameRm are i,j
and then either k or ell, with upper dummy index m on
operatornameRm also replacing either k or ell on beta.
No comments:
Post a Comment