Wednesday, 28 February 2007

gr.group theory - Collapsible group words


What is the length f(n)f(n) of the shortest nontrivial group word wnwn in x1,ldots,xnx1,ldots,xn that collapses to 11 when we substitute xi=1xi=1 for any ii?




For example, f(2)=4f(2)=4, with the commutator [x1,x2]=x1x2x11x12[x1,x2]=x1x2x11x12 attaining the bound.



For any m,nge1m,nge1, the construction wm+n(vecx,vecy):=[wm(vecx),wn(vecy)]wm+n(vecx,vecy):=[wm(vecx),wn(vecy)] shows that f(m+n)le2f(m)+2f(n)f(m+n)le2f(m)+2f(n).



Is f(1),f(2),ldotsf(1),f(2),ldots the same as sequence A073121:
1,4,10,16,28,40,52,64,88,112,136,ldots?1,4,10,16,28,40,52,64,88,112,136,ldots?



Motivation: Beating the iterated commutator construction would improve the best known bounds in size of the smallest group not satisfying an identity.

No comments:

Post a Comment