The integral I need:
$$t(x)=int_{-K}^{K}frac{exp(ixy)}{1+y^{2q}}dy$$
$K<infty$, q natural number
For q=1 this integral is
$$pi/2-int_{Arc}frac{exp(ixy)}{1+y^{2}}dy $$
Where Arc has radius $K$
Upper bound is $$Kpi/(K^2-1)^2$$
Can I obtain a better expression for the integral?
One more question about this integral. For K<1 this integral is just
$$-int_{Arc}frac{exp(ixy)}{1+y^{2}}dy?$$
No comments:
Post a Comment