The integral I need:
t(x)=intK−Kfracexp(ixy)1+y2qdyt(x)=intK−Kfracexp(ixy)1+y2qdy
K<inftyK<infty, q natural number
For q=1 this integral is
pi/2−intArcfracexp(ixy)1+y2dypi/2−intArcfracexp(ixy)1+y2dy
Where Arc has radius KK
Upper bound is Kpi/(K2−1)2Kpi/(K2−1)2
Can I obtain a better expression for the integral?
One more question about this integral. For K<1 this integral is just
−intArcfracexp(ixy)1+y2dy?−intArcfracexp(ixy)1+y2dy?
No comments:
Post a Comment