Background
Lagrangian mechanics on mathbbRnmathbbRn is usually defined by picking a Lagrangian function L:rmTmathbbRntomathbbRL:rmTmathbbRntomathbbR, where rmTmathbbRn=mathbbR2nrmTmathbbRn=mathbbR2n is the tangent bundle of the configuration space mathbbRnmathbbRn. Such a function determines the Euler-Lagrange equations:
fracddtleft[fracpartialLpartialvibigl(dotgamma(t),gamma(t)bigr)right]−fracpartialLpartialqibigl(dotgamma(t),gamma(t)bigr)=0fracddtleft[fracpartialLpartialvibigl(dotgamma(t),gamma(t)bigr)right]−fracpartialLpartialqibigl(dotgamma(t),gamma(t)bigr)=0
Here (vi,qi)(vi,qi) for i=1,dots,ni=1,dots,n are the standard coordinates on rmTmathbbRnrmTmathbbRn, gamma:[0,T]tomathbbRngamma:[0,T]tomathbbRn is a smooth function, and dotgammai(t)=fracdgammaidtdotgammai(t)=fracdgammaidt. Suppose that the matrix fracpartial2Lpartialvipartialvj(v,q)fracpartial2Lpartialvipartialvj(v,q) is invertible for any (v,q)inrmTmathbbRn(v,q)inrmTmathbbRn. Then the Euler-Lagrange equations are a nondegenerate second-order differential equation on mathbbRnmathbbRn. I am interested in the boundary-value problem for LL. Namely, fix T>0T>0 and q1,q2inmathbbRnq1,q2inmathbbRn; the BVP asks to find the set C(q1,q2,T)C(q1,q2,T) of all paths gamma:[0,T]tomathbbRngamma:[0,T]tomathbbRn with gamma(0)=q1gamma(0)=q1 and gamma(t)=q2gamma(t)=q2. Generically, this is a discrete set.
My question
Suppose that if instead of the Euler-Lagrange equations above, I pick some small parameter epsilonepsilon and consider the differential equation
fracddtleft[fracpartialLpartialvibigl(dotgamma(t),gamma(t)bigr)right]−fracpartialLpartialqibigl(dotgamma(t),gamma(t)bigr)=epsilongamma(4)(t)ifracddtleft[fracpartialLpartialvibigl(dotgamma(t),gamma(t)bigr)right]−fracpartialLpartialqibigl(dotgamma(t),gamma(t)bigr)=epsilongamma(4)(t)i
where gamma(4)(t)igamma(4)(t)i is the iith component of the fourth derivative of gammagamma with respect to tt (the "jounce", a word I just learned from Wikipedia). For epsilonneq0epsilonneq0, the EL equations are a nondegenerate fourth-order differential equation, and so generically solutions to the boundary-value-problem above form a two-dimensional family. To restrict to a discrete set, we should fix more boundary values. Pick (v1,q1),(v2,q2)inrmTmathbbRn and T>0, and define Cepsilon(v1,q1,v2,q2,T) to be the set of solutions gamma to the epsilon-dependent EL equations with (dotgamma(0),gamma(0))=(v1,1) and (dotgamma(T),gamma(T))=(v2,q2).
My question is: as epsilonto0, in what sense do we have Cepsilon(v1,q1,v2,q2,T)toC(q1,q2,T)?
No comments:
Post a Comment